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ABSTRACT: The paper studies the diffraction of a shock wave of
arbitrary strength caused by the upper surface of a wedge moving
at supersonic speed by assuming that the intensity of the shock
wave and the attached compression shock as well as the wedge

angle and the angle of shock 1nc1dence differ but little from each
other, ~
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A study is made of the diffraction of a shock wave of arbitrary intensity by the up- /631*
per surface of a wedge moving at supersonic speed, under the assumption that the inten-
sity of the shock wave and of the attached compression shock and also the wedge angle o
and the angle of shock incidence 6 are but little different from each other (Fig. 1).

The case of flow over a wedge moving at supersonic speed with a plane shock wave
iticident on it, without diffraction, was examined in [1]. In this paper conditions were ob-
' tained for the case of flow with constant parameters
in a region AFK bounded by the on-coming shock
wave, the compression shock attached to the wedge
and the wall of the wedge,

Studied in [2] was the diffraction of a shock
wave of arbitrary intensity by a thin wedge moving
at supersonic speed; in [3] a study was made of the
diffraction of a weak wave by a slender wedge mov-
ing at hypersonic speed; also studied** was the dif-
fraction of a weak wave by an arbitrary wedge mov-
ing at supersonic speed,

1. Statement of the Problem, Obtained as a
result of the application of perturbations to a flow
with constant parameters is a diffraction pattern
bounded by the shock wave AB, the compression shock CD, the wall of the wedge AE and
the arcs BC and DE of a Mach circle whose center O moves along the wall of the wedge
at a flow speed of UO-U behind the shock wave AF, where UO is the velocity of the shock

wave and U is the velocity of the shock wave relative to the flow behind it. The problem
is formulated in a coordinate system Ox'y' linked to the moving center of perturbation O,
coincides with the point of intersection of the bisector of the angle AFK with the wall of

*Numbers in the margin indicate pagination in the foreign text,
*%S, M, Ter-Minasyants: Diffraction of a plane wave by a wedge moving at superson-
ic speed. Candidate's dissertation, Moscow State University, 1967,



the wedge. In this coordinate system the unperturbed gas in the region AFK is in a state
of rest. The problem being examined is self-similar in time t. We linearize the equa-
tions of plane unsteady gas motion and introduce the dimensionless variables
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where u', v',v p' are the perturbed velocity components and the pressure perturbation, /632
and ay and p, are the speed of sound and the unperturbed density in region 1,

We represent the equation of the perturbed front of the shock wave AF in the form
z =k -+ (1)
When x =k the relations on the shock wave AB will take the form
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Here a, and V are the speed of sound and the flow velocity in the region O, D1 and

E 1 are known constants dependent on the perturbed parameters Uy Voo Py and P, ahead

of the shock wave in the region O,

Equations (1. 1) can be written in the form

u=4;p+ Fy, y%}j—:B;—a—p for 2=k
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Here F. is a known constant and vy is the heat capacity ratio,

1

Analogous relations can be written on the compression shock KF for y cos S-x sin f=k,

The flow in region 2 is kndwn and corresponds to flow over a wedge at a velocity

Vz—Vl, where V1 is the velocity of the wedge and V2 is the flow velocity behind the inci-
dent shock wave,

Flows with constant parameters in the regions 3 and 4 are completely determined if
relations (1,1) are written on the slightly divergent rectilinear segments:

shock wave FB
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compression shock FC

yeosB —zsinf =k + (y — ys) otg § — &)
the condition on the weak tangential discontinuity FO for y =xtan 12 6 0 is
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on which the pressure and the pressure derivati\{es are constant [2].

These relations yield seven conditions for determination of the seven unknowns Uss

€, and Py =Dy, where &, and &, are small angles of divergence of the
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shock wave and the compression shock.
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tion and Chaplygin transformation the problem reduces to a Laplace equation for the pres-
sure perturbation. The region corresponding to the diffraction region goes over to an or-/633
thogonal curvilinear pentagon ABCDE in the plane z =r exp i § = u +iy, bounded by four

arcs of a circle and a straight line (Fig. 2).

The boundary conditions are written for the normal and tangential components of the
pressure derivatives [4]
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Fig. 2,
where
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and the equations of the arcs AB and CD of the circles have the form, resp.,
E(t 41 = 2rcos0, k(1 7)) = 2r cos(0 — 0p)

The coefficient a of 9p/dn goes to infinity at the points N& AB, L and Q< CD for

On = arctg VBl / kA, OL,q= 60$ar§ tgV By kdy



Integrating the second condition of (1.2) along the shock wave AB and considering
that y = k tan x when x =Kk, we get

k7B, S ctgbdp=vy—v, (2.1)

AB

The conditions which must be fulfilled along the compression shock CD have the
form

kB \ étg 0 — 63) dp= (ug—upy)cosB -+ (v, —v,)sin B'
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The boundary problem we have obtained can be solved by mapping the curvilinear
pentagon ABCDE onto the upper half-plane,

3. Construction of the Function that Maps the Curvilinear Pentagon onto the upper
Half-Plane, By means “of the bilinear transformation
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the curvilinear pentagon ABCDE is mapped onto the second quadiant minus one quarter
of the unit circle with center at the origin and minus one-half of a circle of radius d with

center on the real axis at a distance of -¢ from the origin (Fig. 3) /634
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In order to map this region onto the up-

- per half-plane we continue it by the symmetry
principle into the first quadrant, The function
which realizes the conformal mapping onto the
upper half-plane will be an automorphic func-
tion whose analytic image has ‘the form [5, 6] ’
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Consequently, w is an automorphic function whose group is formed by bilinear sub-
stitutions, These substitutions are determined from various products of the basic sub-

stitutions
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The general form of the mapping function (3.1) can be represented also as
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We find the coefficients Hy and & o calculating a series of various products of the
basic subst1tut1ons
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ete, ; the law of formation of the coefficients is obvious, The series converges faster
the smaller the valve of the parameter d/c contained in (3.2).

Given here is a simultaneous solution of the problem of flow past three cylinders
of radii d, 1 and d. The function w(£) is the complex velocity potential, ey is the power

of the doublet, and gn is the coordinate into which it is imbedded., The intensity of the

images of the doublet decreases; in fact, it decreases very rapidly with decreasing d/c.
If in the expressions for By the squares are replaced by cubes, we get the potential of the

flow past the three spheres, A partial case of this problem, namely, flow pasttwo spheres,
has already been solved by Stokes by the method of successive approximation, in which
doublets of given power p, Were placed at the points of inversion g relative to the two
spheres [7].

The final expression for the function which maps the original curvilinear pentagon
onto the upper half-plane has the form

w=f(z)=—- (1——(1»-}—1/.1) >
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4. Formulation and Solution of the Hilbert Problem., We introduce the
function ’ '
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on the real axis, Here
a=0, b=1, L —e<T< — (¢ +d)f
a=7% (6, 8), b=1, —( L dP<<tr<<—(c — d)*
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a =1, b =0, —1<t<<0
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The coefficients a and b have discontinuities of the first kind at the points 7 = -1
and 7 = 0, and the coefficient a also has discontinuities of the second kind at the points

716:“(0, ), T and 'I’SE[—(C + d)z, —(c~d)2]; the points 7., 7, and 7

1 To 3 corregponds to the

points N, L and Q of the plane z.

The exchange of function /636

1
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where vw(w + 1) is any branch regular in the plane with discontinuity on the real axis,
eliminates the discontinuities of the first kind at the points 7 = -1 and 7 =0 (see, e. g.,
[4]). The Hilbert problem is solved by reduction to the Riemann problem and the points
Ty Ty and Ts will be singular points [8, 9]. Then the index of the problem % =3 and the

solution of the Hilbert problem having a second-~order zero at infinity has the form
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Here
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where by In (1 +1i) (7 - i)'1 is meant a branch which varies continuously on the real axis
(including the point at infinity), except for a certain point ’TOE(—oo, o) which does not

coincide with any of the points of discontinuity of the coefficients a and b, and InG(7) is
determined according to the following rule:

G(v,—0) .
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The real constants Cy €1 and ¢, are determined from conditions (2. 1) and (2. 2).

The solution in the plane z has the form
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I’ — is the contour of ABCDE
on AB (0<< 6<< @,, 6, = arc cos k)
roxp il = X" (cos 0 — M) exp 0
on CD (8, — 0; < 0< B, - 6,)
rexp i0 = k™ (cos (8 — 0,) — / cos? (8 — Bg) — &%) exp 6 |

The pressure is computed by the formula /637
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Having determined the pressure, all the remaining unknown functions can also be
found in closed form, For example, the shape of the diffracted shock wave AB is



computed from (1,1) by the formula
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) (kl) being known from the solution of the problem in region 4.
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